
On the canonical variational 2-form and the canonical transformation of fields

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys. A: Math. Gen. 22 5033

(http://iopscience.iop.org/0305-4470/22/22/027)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 07:44

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/22/22
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phqs. A:  Math.  Gen .  22 (19891 5033-5041. Printed in the U K  

On the canonical variational 2-form and the canonical 
transformation of fields 

Wenhua Hai 
Editorial Office, Journal of H u n a n  Educational Institute, Changsha 41OOl2. Hunan. China 

Receibed 3 Ma) 19x9. i n  tinal form 7 Ju l )  1989 

Abstract. Let held iariable.; < ( . Y I  = ( q ,  p i  be a set of coordinates on  the x " '-dimensional 
cotangent bundle T*M and \', , \'<, the Hamiltonian Rou vectors of T*,M. The canonical 
iariational ?-form G 2 ( < )  is defined by 

and  obtained a s  L j z ( ( )  = I  d".c cfp, A cfq'. The  condition of the field canonical transformation 
g : € -  r) becomes oJ'C€l= W ' i  r )  I. The general theorq of canonical transformations of fields 
is established. I n  particular. some examples of solving field equations and  of field quantisa- 
tion are  g i i en .  

1. Introduction 

The Hamiltonian expression of classical mechanics has two distinct advantages. First 
i t  is convenient for canonical quantisation. Second it allows us to make the canonical 
tramformation. The use of exterior differential forms makes the advantages more 
obvious. The typical instances are the canonical transformation described by the 
canonical 2-form [ 11 and the achievement of geometric quantisation. 

In  field theory, the canonical transformation is ignored. The cause is probably that 
the canonical transformation of fields has some particular difficulties indicated by 
Goldstein in his classical mechanics textbook [2]. In  this paper, we will show that 
those difficulties may be overcome and establish therefore the theory of canonical 
transformation of fields. 

We give first the definitions of the basic variational form and the canonical vari- 
ational 2-form. These are the direct extension of the corresponding differential forms, 
Then we prove the canonical transformation theorem, namely that the Poisson brackets 
of fields or canonical variational 2-form are invariant under the canonical transforma- 
tion. We also discuss the Lagrange bracket of fields, the infinitesimal canonical 
transformation and the generating functional. Lastly, by using the theory of field 
canonical transformation, we easily solve a field equation and give the canonical 
transformation method of field quantisation. 

In  the paper, .Y = (x, - t )  = (x', x " )  denote the ( n  + 1)-dimensional spacetime coor- 
dinates. The field variables 9 ( x ) ,  Q(x)  and their conjugate canonical momenta p ( x ) ,  
P ( x )  are identified as 
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which are two sets of coordinates on the non-countable *'"-dimensional cotangent 
bundle T * M ,  where m is the number of field components. 

Throughout the paper we adopt a summation convention for repeated indices: a 
greek index runs from 1 to 2m and any other index run from 1 to m unless i t  is 
particularly stated otherwise. The tilde above a letter denotes the variational form and 
bold face denotes the Hamiltonian flow vector [ 3 ] .  

2. Canonical variational 2-form 

For brevity we introduce the matrix 

where by I we mean the m x m unit matrix. Using y and ( 1  1 we can simply give the 
following definitions. 

Dejnirion 1. For any functional F [ ( ( x ) ]  and the parameter s, the Hamiltonian flow 
vector is 

a€" S F  
V F  = - e,, = yp., - e,, = V ;  e,, 

d S  ago 

Dejni t ion 2. The basic variational form $6'' is a linear real function &': T * M  + R 
which satisfies the following: 

( 3  1 
( i i )  all of the Sg" ( a  = 1,. . . , 2 m )  and their exterior products obey the rules of the 

( i )  &" (  V , )  = VF where the &" are dual to e,, 

Crassmann algebra. 

Definition 1 is the extension of the Hamiltonian flow vector in classical mechanics 
and definition 2 is the extension of the differential form [4]. From definition 2 we have 

and so on. Further extending the differential form, we obtain another definition. 

Definition 3. The variational k-form in the %'"-dimensional cotangent bundle T * M  is 
c 

where d"x U,,, ill is a functional of 6. 

According to (61, the functional F [ € ( x ) ]  is a 0-form, the variational 1-form and 
2-form can be written in general as 

c 

In order to evade the question of defining the functional product, we avoid the definition 
of exterior multiplication. Here, we give the definition of the variation of a form. 
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Definit ion 4. The variation of the k-form is a ( k  + 1 )-form, i.e. 

Let G[((x)]  be an  arbitrary functional in T* M ;  then application of ( 2 )  and (3) yields 

where the square bracket denotes the Poisson bracket. Making use of the properties 
of the Poisson bracket, we hake manifestly the skew symmetric equation 

i 10) $G( V F  ) = - g F (  V , , ) .  

F[((.u)]=(@(.Y)= d".Y'h' ' ( .~ '-  y ) f " ( . Y ' )  ( 1 1 )  

A special example of the functional is 

1 
with Dirac's 8 function S"( .Y ' - .Y ) .  Inserting this into ( 2 )  yields 

Let AT, be the volume element of space, we can easily prove that V p  is a unit flow 
vector [5] 

Given ( 1 2 ) ,  we have the basic Poisson bracket 

;E1 ( V p  j = [ E '  ( .Y j, 6" ( Y '  11, = y,, 6 " ( .U - x '  ) .  

Now let us give the definition of the canonical Lariational 2-form. 

Dejnition 5. Let F and G be arbitrary functionals in  T " M ,  and let V F  and V,, be the 
corresponding flow vectors, then the canonical variational 2-form + ( E )  is defined by 

(14)  

Let us find the ? ( ( I .  From the general form of G' in ( 7 )  and applying ( 3 ) ,  ( 5 )  to 
qC()i V , ,  Vc,)  = [G, F l s .  

(14), we obtain 

+( V, ,  V , )  = d".u w,,,$(" A i t f i (  V , ,  V,; I 
1, = 1 d"x o,,y,,y,., - - -- - 

=1 d"xw,,i,[&'( C I F ) & " (  V c , ) - & " (  V c ; j & ' ( V F ) ]  

6 F  6G S F  6G 
S t "  S€ '  S E '  SE,  

The right-hand side of (14)  is given by (91. By comparing these we see that ~ ~ , ~ y , ~ ~ y , , ,  = 
fy,,,. Since the matrix y is orthogonal and antisymmetric, we therefore have U,+ = iy<,o.  
Inserting this into (71 ,  we obtain the canonical variational 2-form 

+(  6 )  = d".Y :yc, f i& ' t  &". (15) I 
I t  is obvious that the geometric sense of is a s u m  of un i t  ( g ,  p )  planes. 
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3. Canonical transformation theorem of fields 

Now we consider a coordinate transformation 5- q in the cotangent bundle T * M .  
For arbitrary functionals F and G of q, we define the Poisson bracket by 

6 F  6 G  
d".u- - 

S T y  sql" 

Then we have the canonical transformation theorem of fields. 

Theorem. Let 5 be a set of canonical variables on T * M ,  for arbitrary functionals F, 
G and non-zero constant 2; then the mapping g : 6- 7 is canonical if and only if 

[ F ,  GI,  = Z [ F ,  GI, .  (17)  

This theorem can be proved by using the method which is similar to one used to 
prove a corresponding theorem in mechanics [6], because the Poisson brackets of field 
theory and mechanics have the same algebraic properties. 

In the 7 notation, the canonical variational 2-form is 

f (  q )  = d"x iy , ,8vp A iq' J 
the Hamiltonian flow vector generated by F is 

avp 6 F  

as 6v 
V, = - e, = Y , , ~  - ew 

and corresponding to (14) we have 

Y ( T ) ( V F ,  VG)=[G,  Fl,. 
Therefore from the theorem (17)  we obtain a condition of canonical transformation 
in the form 

? ( V I  = Z 3 5 )  (21) 

i.e. the sum of unit ( Q ,  P )  planes is equal to the sum of unit (4 ,  p )  planes multiplied 
by Z. 

Letting (21) act on the double unit vector ( V,,,, Vp) ,  we obtain the direct condition 
of canonical transformation [2] 

Expanding the left-hand side of (21) directly yields 

Comparing this with the right-hand side of (211, we obtain the basic Lagrange bracket 
of fields 
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Now we show that the infinitesimal canonical transformation satisfies ( 2 1 ) .  In the 
following discussion, the k 2 2 order infinitesimals ( A t ) '  are omitted. We assume an  
infinitesimal transformation generated by Hamiltonian H in the form 

6H 

660 
( I '  = 5; + At&;; = 6:: + A t y ,  I, 7. 

Calculating the corresponding forms by ,$F = d"x( SF'/S.$")&", we find 

where index o denotes the old coordinates. Using exterior products to form 7, 

The second term is zero because the functional derivative factor is symmetric under 
index interchange and the exterior products are antisymmetric. Therefore 

d"x y<,,&: A &: = j ( 0 ) .  (24)  

From this we see that the canonical variational 2-form is an invariant form in the 
motion. If we divide the T * M  into many cells formed by (&$'e,, 6t"'f'e,,,+,), then (24) 
implies that 

i f (  t )  = d"x yU&" A itu = I 

d"x y<,&" A itu = constant. I 
Let us show that the field canonical transformation may be generated by some 

generating functionals, as is the case for classical mechanics. Setting some 1-forms as 
the following: 

- - -  e 

$ 1  = -42 = $3 = -$4. 

We define the generating functional G, as 
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Applying ( 2 5 ) ,  (26) and ( 2 7 )  we have the condition of canonical transformation in the 
new form 

$G, = E ' $ ~ " " - , , " , " ' ' '  

$G 2 -  - -EIgt))Ir( - 
$G2 = - [ l t r - l$( i  - 771$,,))1fl 

77 , > I  - I ill I 

Using ( 2 1 )  with 2 = 1 we find $G, = 0. 

are respectively expressed by 0-form, 1-form and 2-form. 

iG, = [ I , ,  * I it, - ll , ? I  - I gT7 ,, ( 2 8 )  

We see that the three conditions ( 2 2 ) ,  (28)  and ( 2 1 )  on the canonical transformation 

As is the case in  the differential form, we ha\.e the Stokes theorem in variational form 

(29)  [,, ; A  = 1, i G A  

where aU is the bound of range U in T * M .  

4. Canonical transformation approach to classical and quantum fields 

I n  this section we study the applications of the method of field canonical transformation. 
We give two examples of classical and quantum fields. Through these examples, we 
point out the technique and meaning of applying the method of canonical transforma- 
tion to fields. 

4.  I .  Solcing non-linear .field equations with the canonical transforniation 

Considering the sci equation 

C F l i  - C F \ \  - CF>! - CF:: = sin CF ( 3 0 )  

i n  four-dimensional spacetime, we will find its plane soliton. The canonical field 
variables are 

Q = C F  P = 7 r = q , .  

4 = As + BJ. + Cz + Dt 
D 

p = 5 d'z? ( ~ x ' - ~ T p  * T q  +cos  p )  

We make a canonical transformation g:  ( Q ,  P ) - ( 4 ,  p )  such that 

(31)  

where TT = D d q l d 4 .  The density of the new generalised momentum p is 

1 , D 
/$ =-- x-+-;cos 4. 

2 0  k -  (33 1 

We easily see that the transformation giLen above satisfies the direct condition ( 1 2 )  
of canonical transformation, namely 

d q  6 p  311 TT - - _  
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because from (34) we can obtain k2(d 'q /dq ' )  =s in  q. This is the same as  the result 
obtained by inserting (31 )  into (30) .  From (34)  we find easily that 

this implies p and #i are the constants of motion. Then we can solve ( 3 3 )  for ;i and 
use it in (34), arriving at the plane-have solution of (30): 

By appropriately selecting D and k ,  from (35)  we can easily obtain the plane soliton 
of the sci equation. 

Applying the above-mentioned method, obviously, we can obtain the plane solitons 
of the non-linear K G  equations obtained in many articles such as [7 ,8 ]  and the 
corresponding results for any n-dimensional case. Inspecting the example gi\.en above, 
we find that i t  has a few characteristics such as the following. 

( a )  The new canonical variables are without clear and definite physical meaning; 
this is in agreement with the corresponding results in classical mechanics. On one 
hand, the 9 in (31)  is a generalised field coordinate; on the other hand, the space 
coordinates x also act as indices. Goldstein thinks that this cannot be accepted by the 
theory [2]. But, just as we see from (341, the relations between q and (p, n) satisfy 
the condition of canonical transformation indeed. We must accept this fact! I t  looks 
as if  we ought not to investigate the physical meaning of the new canonical variables. 

( b )  The new generalised momentum and its density are constants of the motion; 
this is one of the cruxes of simplifying the problems. The canonical transformations 
in mechanics are also done in this way. Seeking some constants of motion and taking 
them as the canonical variables can simplify the problem of solving field equations. 
The canonical transformation can otherwise make the problem more complicated. 

( c )  Evading the generating functional and making use of the condition of direct 
canonical transformation are another key to simplifying the problems. We have studied 
the similar case in mechanics [9]. 

According to the above-mentioned characteristics, we can rapidly find the appropri- 
ate new canonical variables and simply obtain the solutions for some field equation. 

4.2. The canonical transjbrmation method ?/',field quantisatioti 

I n  the canonical quantisation theor). of classical dynamics, the rectangular coordinates 
x i  and their conjugate momenta p ,  are the basic canonical variables. The Poisson 
brackets taking xi, p ,  as arguments are the basic brackets. For the basic Poisson brackets 
of the dynamic variables F and G, the canonical quantisation conditions are such 
that [ l o ]  

[ F ,  G I =  F G - G F = i h [ F ,  GI,,, (36)  

where F, G are the corresponding Hermite operators. 
As a dynamic system, the field has its energy-momentum [ 111 p r  (1-c = 0 ,  1 , 2 , 3 ) .  

What is the conjugate canonical coordinate of p ,  ? According to the correspondence 
between field and dynamics, we may assert categorically that one conjugate to the 
momentum p ,  of the field must be the space coordinate .xi! In fact, [ l l ]  and many 
other articles have used this assertion to handle the problem of the translation invariance 
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of fields [12]. Maintaining ( x , p )  as the canonical variables of fields, from (22) we 
obtain the momentum equation 

(37) 

Conversely, from the course in field theory obtaining that (x, p )  satisfy the direct 
condition (37) of the canonical transformation, we may assert that ( x , p )  are the 
canonical variables of fields. As for the sense of the generalised coordinates x '  of 
fields, we d o  not investigate this. As in the dynamic case, we maintain that (x, p )  are 
the basic canonical variables of fields, then the quantisation conditions of the basic 
Poisson brackets of fields are just (36). Given (17) and (131, we easily obtain from 
(36) the commutation relation of the field variables (9, T ) :  

Here, we have considered a restricted canonical transformation with Z = 1. This kind 
of restricted case is universal in classical dynamics. 

I f  we now make a canonical transformation with 2 = i, then we have the annihilation 
and creation operators of the particles after the quantisation. This method of field 
quantisation is new and  simple. A clear example on the canonical transformation with 
2 = i  is the complex transformation [ 131. 

As an example, let us consider a complex canonical transformation in matrix 
form [ 141: 

~ " ( k )  = ( 2 ~ ) - ' ' ~  d'xJ,,,(kx)('(.x) I 
where ( = (cp, T )  are the scalar field variables and k 
particles. We require the energy-momentum of the 
number operator, which retain the usual form 

pr = d'k k,  ( N + A) = d'k i k r  (v"v' + '' ) I  y( , ,  I I I 

(39) 

denotes the momentum of the 
fields in terms of the particle 

p = O , l ,  . . . ,  n.  (40) 

Thus J,,,(kx) in (39) must satisfy the following relations: 

J,,, = -J:, 

J,, = -J,,w., 

J,,,,,+, = JL- t 

J,.,,,-, = J,,,,,,,,,,, 

IY,~~IJ , , , (~~)J , ,  ( k ' x )  = 6 e"' I "  

y r ,  J,,, (kx)J,,(k'x) = iy,,, e "k -k  '" 
j ,  k = 1, . . . , m 

Therefore we have the Poisson brackets 

a,p,  p, U =  1 , .  . . , 2m .  

(41 
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After the quantisation this becomes 

[ q i ' ( k ) ,  q P ! k ' ) ] =  y , $ ' ( k - k ' )  (43)  

where the 7 are just some kind of creation and annihilation operators. The difference 
between 77 and the corresponding operators [ 111 ( a ,  a ) in the general field theory lies 
in the fact that any q" is the linear combination of all [ and any a,  is only related to 
part of [. 

The inverse transformation of (39) is 

This shows that any 9 '  relates to all of the creation and annihilation operators q, but 
the y '  in ( a ,  a ) notation does not have this property. A matter deserving of attention 
is the fact that, i n  the q notation, although the form of energy-momentum of the free 
fields in term of the particle number operator N = ~ ' q " ' + '  = a ,  a, is not changed, the 
form of the Hamiltonian of the interactive fields will be changed. This will directly 
affect the calculating of results for the scattering matrix elements. We wish by applying 
the method to  improve the original results and by making the linear or non-linear 
canonical transformation to eliminate some divergent terms in the scattering matrix 
elements. 

In addition, applying the theory established aboLe to the calculus of variations and 
the variational principle of fields [15 ] ,  there is still more interesting work. From [16] 
we may see the gauge transformation in field theory as a canonical transformation. 
This will be studied further in future papers. 
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